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Newton’s methad is combined with a preconditioned conjugate
gradient-like algorithm and finite volume discretization to solve the
steady-state two-dimensional tokamak edge plasma fluid equations.
A numerical evaluation of the Jacobian is employed. Mesh sequenc-
ing, pseudo-transient continuation, and adaptive damping are used
to increase the radius of convergence. The computations are per-
formed on a multiply-connected curvitinear geometry in a fully cou-
pled manner. The preconditioned conjugate gradient-like algorithm
is shown to have a significant storage advantage over the previously
used banded Gaussian elimination, while maintaining the excelient
convergence characteristics of the overall algorithm. Stmulations
of a high recycling divertor and a gasecus divertor on the DI-D
tckamak geometry are used to demonstrate algorithm perfor-
mance. © 1985 Academic Press, Inc.

1. INTRODUCTION

The large heat flux incident on the divertor plaies in the
current design of the International Thermonuclear Experimental
Reactor (ITER} must be reduced [1]. The plasma outside the
last closed magnetic flux surface of the tokamak controls the
heat flux to the divertor plates. This region of a tokamak is
referred to as the edge plasma. In order to further study, under-
stand, and develop solutions to this problem we need the capa-
bility to mode! the pertinent physics and the proper geometry.
Development of a robust and efficient computational tool for
the two-dimensional tokamak edge ptasma fluid equations that
includes: high neutral recycling; fluid drifts; significant concen-
trations of radiating impurities; and a multiply-connected, curvi-
linear, non-crthogonai, geometry has proven to be a difficult
task. There are many reasons for this difficulty, such as: the
mulitiple time scales which are encountered between electron
energy conduction, paralle! sound speed, atomic reactions, and
cross-field transport; strong nonlinear feedback between radiat-
ing impurities and neutrals, and the electron energy equation;
the fact that drift flows can dominate over parallel pressure
gradient driven flows; and the disparity in spatial scales between
magnetic field line connection length and the ionization mean
free path of a recycling neutral.

While it is not the intent of this paper to be a review article
on edge plasma fluid modeling, it is constructive to describe
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other solution algorithms which are being applied to this system
of equations and contrast them, algerithmically, with inexact
Newton’s method. The intent is to motivate the choice of inexact
Newion’s methods, In the past, the two main solution algorithms
applied to the tokamak edge plasma equations were the SIMPLE
{semi-implicit pressure linked equations) algorithm {2, 3] and
ADI (alternating direction implicit) based algorithms [4, 5].
Both of these algorithms are based on splitting, ADI by direc-
tions and SIMPLE by conservation equations.

The SIMPLE algorithm combines the continuity and momen-
tum equations to form an implicit pressure equation, which in
theory removes the Courant limit on sound waves. The set of
conservation equations is then split, and solved/relaxed in a
segregated fashion. Since the edge plasma is modeled with an
ideal gas equation of state and exhibits strong temperature and
density gradients in the recycling region, the energy equation
should be very important in determining the impiicit pressure.
The SIMPLE algorithm does not account for this coupiing
implicitly. This assumption in the SIMPLE algorithm, along
with the segregated solution, is potentially the reason for its
poor convergence behavior on low Mach number compressible
reacting flow problems with large temperature and density gra-
dients, such as those seen in diffusion flames [6]. Other pressure
equation-based semi-implicit algorithms, applied to reacting
flow problems, have included information about the energy
equation in the pressure equation in order to improve algorithm
performance [7].

In contrast to the SIMPLE algorithm the AD] algorithm splits
in the grid direction and not by equation. For a scalar, elliptic,
2D equation on a rectangle there are a series of pseudo-time
steps that should be cycled through for optimum convergence
behavior (4, 8]. These time steps depend on the bounds of the
eigenvalues of the two matrices which arise from the splitting
[4, 8). The edge plasma is a problem with widely varying time
scales, and the transport along and across the magnetic field
have very different propagation speeds. This physics leads to
widely varying eigenvalues between and within the two matri-
ces arising from the splitting, and thus it will be difficult to
obtain strong convergence behavior out of an ADI algorithm.
Another example where this problem arises is in solving the
low Mach number compressible Navier—Stokes equations. In
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this case, a large disparity exists between pressure wave propa-
gation and fluid velocity. ADI based algorithms have difficulty
with this problem since the eigenvalues vary over a large range
and a single pseudo-time step cannot be optimum [9]. 1t should
be mentioned that research has been performed on dynamic
ADI (DADI) [10], where a variety of time sieps are cycled
through adaptively.

The SIMPLE and ADI algorithms make assumptions which
were intended to make solutions of large systems of equations
tractable, but at the same time which compromised convergence
characteristics. Consequently, the removal of splitting, either
by equation or direction, will lead to a2 more robust solution
algorithm. For this type of algorithm to be practical, the solution
of the resulting large linear system must be made tractable. It
is extremely desirable to have Newton’s method for lineariza-
tion in a folly implicit algorithm duve to its quadratic conver-
gence behavior. This property also tends to remove ambiguity
from the test on convergence.

Because of the multiple time scales and strong nonlinear
coupling between equations, fully implicit Newton’s methods
were first investigated by Knoll er al. for this problem {11, 12].
This research used an analytically derived Jacobian with banded
Gaussian elimination and mesh sequencing to provide a robust
and CPU efficient solution algorithm for a simply-connected
Cartesian geometry. This work demonstrated the viability of a
fully implicit solution of the edge plasma equations. Several
improvements to this original algorithm are described in this
paper. The analytic Jacobian evaluation has been replaced by
an efficient numerical Jacobian evaluation [13, 14). The simply-
connected Cartesian geometry has been replaced by a more
realistic multiply-connected, orthogonal, curvilinear geometry.
The multiply-connected geometry poses additional matrix stor-
age concerns and has motivated the switch from a banded
Gaussian elimination matrix sclution algorithm to a precondi-
tioned conjugate gradient-like iterative algorithm, namely, the
transpose-free quasi-minimai residual (TFQMR) algorithm
{15]. The degree of required convergence of this inner linear
iteration is related to the level of convergence of the outer
Newton iteration. This overall algorithm is referred to as an
tnexact Newton's method [16, 17]. In addition, a pseudo-tran-
sient continuation algorithm has been implemented to im-
prove robustness.

It is important to acknowledge other successful applications
of Newton's method to the edge plasma fluid eguations with
more complicated physics. Campbell [18] has applied Newton’s
method to the one-dimensional along-the-field equations with
multifluid radiating impurities. Rognlien ez al. [19] have applied
Newton’s method to the two-dimensional equations and in-
cluded cross-field fluid drifts. Also, there has been recent prog-
ress in finite element modeling of the edge plasma using New-
ton’s methed [20, 21].

The remainder of the paper is organized as follows: Section
2 gives a brief description of the edge plasma geometry and
fluid equations. The origin of the multiply-connected geometry
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FIG. 1.

(a) Physical domain; (b} computational domain.

will also be described. The numerical solution algorithm will
be described in Section 3, with special attention given to the
preconditioned conjugate gradient-like inner iteration. In Sec-
tion 4 we will present algorithm performance results obtained
in simulating a high recycling divertor and a gaseous divertor
using a DIII-D tokamak geometry. Conclusions and future re-
search are discussed in Section 5.

2. EDGE PLASMA GEOMETRY AND FLUID EQUATIONS

A schematic of the poloidal cross section of a single null
divertor tokamak is shown in Fig. 1a and the representative
computational geometry is shown in Fig. 1b. The two directions,
poloidal and radial, in the physical domain correspond to x and
vin the computational domain. The region outside the separatrix
is the edge plasma. The region inside the separatrix and above
the null point is the core, and the region below the null point
is called the private flux region. To accurately model the edge
plasma and to minimize the impact of boundary conditions we
include the private flux region and part of the core region in
our computation. The finite volume grid, which is generated
from the equilibrium magnetic field structure, is constructed
such that one set of grid lines (x) are parallel to surfaces of
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constant magnetic flux in the poloidal plane, and the other set
of grid lines () are orthogonal to the first set [22, 23]. When
this grid is represented in the computational domain using 2D
data structures we have a multiply-connected geometry [13].
This means that points which are nearest neighbors in physical
space are not always nearest neighbors in computational space.
The effects of the multiply-connected geometry on the Jacobian
matrix structure will be discussed in Section 3.

The set of edge plasma fiuid equations that we will solve in
this paper is a simplified form of the Braginskii equations
[24]. Ambipolar flow and purely diffusive radial transport are
assumed, and the effects of viscous heating have been neglected.
In addition, the neutrals that are generated at the divertor plate
are assumed to be atoms and are modeled with a single energy
diffusion equation §25]. The governing equations, with x repre-
senting the poloidal direction and y the radial direction, are

* continuity,
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283
P =nl, P.=nl; (6)
* radial velocity,
p= 222, ™
n oy
= poloidal velocity,
B,

= E . (8)

In these equations » is the plasma density, #, is the neutral
density, and y is the velocity along the total magnetic field, B.
T; is the ion temperature, T, is the electron temperature, and
B./B is the magnetic field pitch. In this model, the poloidal
transport coefficients are classical Braginskii [24] and the radial
transport coefficients are anomalous, i.e., empirical. The right-
hand side of Eg. (3) represents the combination of the ion
pressure gradient and acceleration due to the ambipolar electric
field. The electron and ion poloidal thermal conductivities are
flux limited in the standard manner [11, 12] to bridge the gap
between continuum and kinetic behavior. The neutral diffusion
coefficient is developed from diffusion theory assuming thermal
equilibriom between neuiral atoms and plasma ions [25] and
1s a function of », T;, and T..

The source and sink terms due to ionization and recombina-
tion depend on the electron impact ionization rate, {¢#);., and
the recombination rate, {#),., which are both table look-up
functions of 7, and n. The electron energy loss per ionization,
&,, is a table look-up function of T, and n. These rate tables
have been produced by ADPAK [26] and include collisional
radiative corrections [27]. The closure statements for radial and
poloidal velocities do not include the contributions from cross-
field drifts. The inclusion of these terms is part of our ongoing
research effort.

3. NUMERICAL SOLUTION ALGORITHM

The inexact Newton algorithm with mesh sequencing is char-
acterized by three nested loops. The outer most loop progresses
through a series of continually refined grids. The nextlevelisthe
Newton iteration, and the inner most loop is the preconditioned
conjugate gradient-like iteration, which solves the linearized
problem.

3.1. Inexact Newton’s Method

The Newton—Raphson method is a robust technique for solv-
ing systems of nonlinear equations of the form
F(x) = LAX), AX), ..., f(x)]" =0, (9

where the vector of state variables, X, can be expressed as
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X =[x, %, ..., x,|™ (13
Application of the Newton—Raphson method requires the solu-

tion of the linear system,

Joxt = —F(x", (I1)
where the elements of the Jacobian, J, are defined by
- af!
Ji= 12
= (12)
and the new solution approximation is obtained from
X" = x" + 5 Sx". {13)

This iteration is continued until the norm of &x and/or the norm
of F(x) are below some suitable tolerance level. The scalar, s,
is used to damp the update. The damping strategy is designed
to prevent the calculation of negative thermodynamic variables
and 1o scale large variable updates when the selution is far
from the true solution [11, 12].

Since the use of an iterative technique to solve Eq. (11) does
not require the exact solution of the linear system, the resulting
algorithm is labeled an *‘inexact”” Newton’s method [16, 17].
This feature is advantageous in the sense that the tolerance of
the linear equation solve can be relaxed when far from the true
solution and tightened as the true solution is approached. In
other words, the convergence criterion for the inner linear itera-
tion is related to the current convergence status of the outer
Newton iteration. This behavior is controlled using an inner
iteration convergence criterion similar to that proposed by Aver-
ick and Ortega [16] and Dembo [17]. Specifically, the inner
TFQMR iteration is assumed converged when

e 8x + F(xl,
Faol, a9

The selection of the best value of 7, is highly empinical. We
have found that y, = 5 X 1072 works welt in practice for the
edge plasma equations.

3.2. Numerical Jacobian

The elements of the Jacobian in Eq. (12) are evaluated numer-
ically using finite difference approximations,

— .ﬁ(xthy seey xj + ijr srey x.rz) —ﬁ(x11x21 rery xn)
AXj

Jij (1%

where
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Ax; = ax; + 8 (16)

and ¢ and B are small perturbation constants.

3.3. Preconditioned TFOQMR Algorithn

The desire to extend the original solation algorithm to handle
multiply-connected domains and two-dimensional multifluid
radiating impurities motivated the switch from a banded
Gaussian elimination solver to an advanced iterative algorithm
for the solution of Eq. (11). The use of a banded Gaussian
elimination in solving these types of problems would be very
costly, both in terms of CPU time and memory requirements
due to the large bandwidth.

An alternative to the use of a direct linear solver is the use
of true conjugate gradient methods to solve linear systems of
the form Ax = b. These methods compute approximations to
X in the affine space X, + K., where K, is the Krylov subspace
of dimension m [28]. They are characterized by an optimality
condition (minimization of some error norm) and economical or
short vector recurrences [29]. Note that for symmetric matrices,
short vector recurrences arise naturally, resulting in constant
work and storage requirements on cach ieration. For non-
symimetric matrices, however, short recurrénces do not exist
(307 and so the work and storage requirements increase with
the iteration number, making the use of true conjugate gradient
methods impractical for large problems.

In some instances true conjugate gradient methods may be
successfully applied to the normal equations (ie., A"Ax =
ATh). Disadvaniages in this approach, however, are that the
condition number of the new system is made much worse, and
matrix vector multiplications with AT are required. Working
with AT is undesirable for several reasons: first, the transpose
is not always readily available; second, the efficiency of matrix
vector multiplications with the transpose may be reduced on
vector/paraliel computers; and third, working with the transpose
eliminates the option of matrix-free implementations of New-
ton’s method [31-33].

The problems associated with the application of true conju-
gate gradient methods have motivated the development of con-
jugate gradient-like methods. These methods are derived by
relaxing either the optimality condition or giving up short vector
recurrences [34]. The unrestarted GMRES algorithm is an ex-
ample where optimality is obtained by sacrificing economical
vector recursions. Conversely, short vector recurrences can be
obtained at the expense of optimality by allowing periodic
algonthm restarts (i.e., GMRES(k) [35]), by artificially truncat-
ing the recursion {i.e., the new direction vector is orthogonal
to only the previous s direction vectors), or by using the non-
symmetric Lanczos biorthogonalization procedure (i.e., using
three-term recursions to build a pair of biorthogonal bases)
[34], The development and investigation of these conjugate
gradient-like algorithms continues to be an active research area.

The transpose-free guasi-minimal residual algorithm
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FIG. 2. Jacobian matrix structure from multiply connected domain.

(TFQMR) of Freund [15] is a Lanczos-based conjugate gradi-
ent-like algorithin that we have implemented 1o take advantage
of the sparse structure of the Jacobian matrix. In order to acceler-
ate the convergence of the TFQMR algorithm, we currently
use incomplete lower—upper (ILU) factorization as a right pre-
conditioner with no fill-in allowed (i.e., L., U have same sparsity
pattern as J = ILU(0)] [36, 37]. We have investigated both
higher levels of fill-in (ILU}&)), as well as less costly classical
preconditioners such as Jacobi, Gauss-Sidel, symmetric
Gauss—Sidel, SOR, and symmetric SOR. To date, 1LU(0) has
provided the best compromise between CPU performance and
preconditioner effectiveness for this problem when solving the
steady state equations. We are currently studying the use of
block ILU preconditioners and domain-based preconditioners.

The structure of our Jacobian matrix, resulting from the
multiply-connected domain, deserves further discussion. This
structure will vary depending on whether i, the poloidal grid
index, or j, the radial grid index is the fastest running index
when we construct the Jacobian. When banded Gaussian elimi-
nation was used as the matrix solver (before the implementation
of the multiply-connected domain) the Jacobian was con-
structed with § the fastest running index (ordering 1). This was
done since the number of grid points in the y direction, ny, was
always less than the number in the x direction, rx, and this
choice generated the minimum bandwidth matrix, which led
to reduced memory and CPU requirements. For the multiply-
connected domain with a banded solver, it is advantageouos to
order with i the fastest running index (ordering 2). The banded
structure of the Jacobian matrix on a2 muitiply connected domain
is shown in Fig. 2 for both orderings. Here we can see that the
transport across the cuts in the computational domain, Fig. 1b,
can significantly increase the matrix bandwidth. This has been
one of the prime motivations to move from a banded direct
solver 1o a preconditioned conjugate gradient-like solver. The
storage requirement for our current implementation of 1ILU(D)

TFQMR is twice the pumber of nonzero diagonals times the
dimension of the matrix. The storage requirements for the two
different orderings are compared to that of banded Gaussian
elimination in Table I as a function of grid dimension. In this
table, and Fig. 2, we have set the number of poloidal grid points
between each plate and the null point to one quarter of the
total. The memory savings is clear. The motivation for not
using [LU(L), or higher, is the rapid increase in the number of
nonzero diagonals in going from ILU(0) 1o ILU(1) for our
multiply-connected domain. For the five equation system on
an orthogonal, staggered grid ILU(0Q) requires 65 diagonals
and ILU(L) requires 240 diagonals. While ILLI{(1) is a better
precondittoner and reduces the required number of TFQMR
iterations, the extra cost in forming ILU(1) and using it in
forward/backward solves actually increases the CPU cost. How-
ever, in the application of inexact Newton methods on simply
connected geometries, we have observed CPU savings using
ILU(1) or ILU(2) preconditioning [14].

The TLU(0) right-preconditioned TFQMR algorithm is pre-
sented below for cornpleteness, where (Pr) = (LU) ™' represents
the inverse of the preconditioning matrix. The algorithm solves
the system Ax = h, where A represents the Jacobian matrix
{J). x is the Newion update {6x), and b is the Newton residual

TABLE I

Linear System Solution Memory Requirement in Megawords

LINPACK
Grid size LU
nx, ny TFQMR Ordering 1 Ordering 2
32,8 0.17 2.4 0.61
64, 16 0.67 39.3 5.0
128, 32 2.67 629 39.3
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(—F(x)). All other new vectors and scalars are self-defined
within the algorithm.

() Initialize
1. Choose X,
2. Set:
S =f=>b —AX. @ =p,=d, =0,
w=p=n=0

ooy = Lo = [e§%; (| denotes Euclidean
norm)
Iy Forn =01, 2, .. do:{nis not the Newton iteration
COumt)
i. Set:
~ RTpCGS _ P = OGS .
Prn = LIy an___'9 u, = r; +Bnqns

n-1
P = W+ BAq. + BuPai). Vo = APOP,.

— T = P-
a, = .r()vn, X, = —,

qn+l = u.vx - anvm vn = an(pr)(un + qﬂ+l)a

CGS — OGS _ R
Fivi =T, AV,,,,

2. Form=2n+ 1,2n+ 2do:

o = { rsss| ifom + 1) is odd
" VRS eSS if o + 1) is even)”
Wyt
Vm = ]
T—1
c=—~——-——-1 Ty = Tyt Pnliy N = CLEY,;
" m: " w=1¥mbms fm mn
W if mis odd
¥n Q. ifmiseven|’
Vi s Th-
d, = ¥ T _ﬂ?__l'dm—l;
Qay
Xm = xm*l + T’m(Pr)dm’

Continue until X, has converged

3.4, Mesh Sequencing

Mesh sequencing is used to obtain an initial guess on the
finest grid which lies within the radius of convergence of New-
ton’s method. Mesh sequencing is analogous to the first upward
cycle of a Full Multigrid (FMG) algorithm [38]. We use Lagran-
gian interpolation polynomials to move through a series of
predefined grids, and the interpolated solution from the previous
grid is used as the initial guess on the new grid. We have found
that with the edge plasma equations and geometry the accuracy
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of the interpolation is very sensitive to the interpolation direc-
tion. Because of the strong coupling (i.e., transport) along the
magnetic field, we interpolate in this direction first,

3.5. Pseudo-transient Continuation

Another method for improving the initial guess for Newton’s
method is to use an elementary continuation procedure. We
have implemented the switched evolution relaxation algorithm
(SER) [39]. This technique involves including artificial tran-
sient terms in the governing equations, specifically, time deriva-
tives of the principal variables. Implementation of this algo-
rithm requires the introduction of a false time step, At, in the
discretized equations. At must be chosen sufficiently small to
ensure convergence, yet large enough to obtain efficient steady
state calculations. We typically vse At = 1.0e—6s which
should resolve 1on sound speed but not electron conduction. In
our algorithm, At is chosen adaptively as

”F(XD)”w Ary

RO TCTTR

a7

where the F(x) represent the steady state equations, not the
transient equations. The initial time step, Af,, is set at the usnal
explicit stability limits. The time step is further controlled by
the scaling parameter, %, which typically is taken to be 10.
Equation (17) forces At to be small when the transient is far
from steady state, but allows it to increase rapidly as steady
state is approached. Use of this algorithm requires tracking and
monitoring the residuals of the steady equations throughout the
pseudo-transient.

4. ALGORITHM PERFORMANCE

In order to demonstrate algorithm performance we model
both a high recycling divertor and a gaseous divertor using a
grid which represents the DIII-D tokamak at General Atomics
in San Diego, CA. A high recycling divertor is one in which
the majority (>95%) of the ion flux to the divertor plates is
recycled as a neutral source. A gaseous divertor is created by
an additional source of neutral gas injected into the divertor
region. The purpose of this injected gas is to extract energy
from the electrons through atomic line radiation and from the
ions through charge exchange. We use te same three grid se-
quence for both problems; 32 X 8, 64 X 16, and 128 X 32.
The 64 X 16 grid is shown in Fig. 3.

We refer to the computational geometry shown in Fig. 1 to
describe the boundary conditions for the high recycling di-
vertor simulation:

(1) Core (2-3)
. T‘l = Te ==
anlay = 0

{2} Prvate flux (3-4 and 1-2)

150 eV, n = 2 X 10° m™, » = 0,
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FIG. 3. 64 X i6 DII-D grid.

» 3T)/dy = 0T /3y = dnfdy = 8y/dy = aufdy = 0,

(3} Divertor plate (4-5 and 8-1)

V(T + TY(m+ m) = C, (subsonic), Ayl
dx = 0 (supersonic)

* D, (3ny/3x) = R(B./B)n u), R = 0.98

'un =

. Qi = (%(Bx[B)MH nTh Qt = 6:(8118)5‘11 nTe; 5] = 2-53

8. =355
* with Q = 3(B,/B)uy nT — «,(8T/dx),

{4y Wall (5-8)
* aTifdy = aT. /3y = dn/dy = Byldy = 0
=D, (nyfay)y = 1 — Y1 + ), VTim,

_ for 6-7
Y 1095 fors5-6,7-8

The boundary conditions at the divertor plate are the most
complicated and controversial {40-42]. In this paper we use
the standard boundary condition arrived at from plasma sheath
theory [43]. Here, the neutral flux is assumed to be some fraction
of the plasma flux flowing in the opposite direction. This corre-
sponds to ions neutralizing at the plate. The albedo boundary
condition on the wall for neutrals is intended to simulate neutral
pumping from the machine.

We continue to use standard five-point finite volume differ-
encing on a staggered grid with thermodynamic variables at
cell centers and velocities at cell faces. Upwinding is used for
convective terms. We are in the process of studying higher
order upwinding schemes in the poloidal direction to more
accurately resolve the sharp fronts that occur in a radiative/
gaseous divertor. Also, in most experiments, the poloidal mag-
netic field lines do not intersect the divertor plate at an orthogo-
nal angle. Consequently, we are developing a nonorthogonal

finite volume stencil and have generated some initial results
[44] which will be the subject of another paper.

Figure 4 shows the convergence behavior for this problem
on the three-grid sequence, In this case the steady-state equa-
tions were solved directly and SER was not used. The benefit
of doing the early iterations on a course grid are clearly demon-
strated. The total CPU time for this run on a Cray-C90 was
2305, Approximately 30% of this time was spent forming
the Jacobian and 70% was spent solving the linear problem.
Approximately one-third of the linear solve time was spent
forming the preconditioning matrix. On average, the number

100
]
L]
L3
h-]
a
=]
=4
20
T E —=— 32x8
2 . —e— &4xl6
o 107%% —a— 128x32
o 3
s ]
:" 10754
10'51
]
10-7 v r - T -
¢ 10 20 10
Newton Heration

FIG.4. Average Newton update on three grid sequence for high recycling
divertor simulation.
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FIG. 5. Electron temperature and plasma density for high recycling simulation.

of TFQMR iterations required per Newton iteration on the
32 % 8, 64 x 16, and 128 X 32 grids were 15, 30, and
60, respectively.

Figure 5 shows the contour plots of electron temperature and
plasma density for this problem. The short horizontal line near
the null point is a function of the plotting package. We can see
the drop in temperature and the increase in density as we move

100

1] 2]
=] <

Y
[=)

Temperature {eV)

20}

2.5

28 2.7 28
Poloidal Distance {meters})

29

towards the divertor plates poloidally, which characterizes a
high recycling divertor solution. We also see the sharp radial
gradients in temperature between the private flux region and
the divertor region. Figure 6 contains poloidal line plots of ion
and electron temperature, paralle! Mach number, and plasma

and neutra] density, all just outside the separatrix on the out-

Parallel Mach Number

board side. The null point is at x = 2.7 and the right boundary
1021
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FIG. 6. Electron (T.) and ion (T;) temperatures, paralle] Mach number (Ma), plasma (N,) and neutral (M) densities along separatrix in outboard divertor
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of the plots is the divertor plate. These plots show the density
buildup and the temperature drop after passing the null point.
We also see the acceleration to sonic flow right at the plate.
Even at its highest value, the neutral density is significantly
below the plasma density. This solution has 3.45 MW and 6.0e-
21 particles per second crossing the separatrix; (.85 MW were
radiated out of the problem with the remainder of the power
going to the plates. On the outboard plate, the peak electron
temperature was 18 eV, the peak plasma density was 1.le-
20m™, and the peak heat flux was 2.5 Mw/m’,

The convergence results in Fig. 4 were generated using
¥, = 5.0e-3 in Eq, (14). Figure 7 compares the convergence
behavior of this choice with results using y, = 1.0e-2 and
1.0e-1 on the 64 X 16 grid. We can see the effects of increasing
v,: the increased number of Newton iterations and the loss of
monotonic convergence. Table I shows the effect of varying
¥, on required TFQMR iterations and relative CPU times. This
problem appears relatively insensitive to the choice of vy, with
regard to CPU time.

Recently, much attention has been given to the gaseous/
radiative divertor concept as a means to reduce the heat flux
at the divertor plates [45]). Experiments have been performed

TABLE 11
Effect of v, in Eq. (14) on a 64 X 16 Grid Solution

Total Newton Total TFQMR Relative CPU
Y iterations iterations time
5.0e-3 5 147 1.0
1.0e-2 6 146 1.06
1.0e-1 8 I16 1.07
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on a number of tokamaks [46, 47] to further investigate these
ideas. Here, we simulate deuterium gas puffing into the first
model problem in order to further demonstrate the performance
of this algorithm. The same boundary conditions and grid are
used, except that the neutral equation, Eq. (2), has an inward
directed flux boundary condition along the 1-2 and 3-4 segments
of Fig. 1b. This simulates deuterium puffing from the floor of
the machine as shown in Fig. 1a. For this problem a deuterium
atom flux of 3.0e-22 7' is distributed uniformly over segments
1-2 and 3-4. This is approximately three times the puff rate
that has been used in DITI-D experiments and is intended solely
to demonstrate the capability of the algorithm to converge on
cold plasma solutions with an *‘ionization front.”” The addition
of this gas puffing makes the problem more difficult and a
solution for solving the steady state equations directly is not
possible without a very good initial guess, We use SER on the
first two grids and then solve the steady-state equations on the
fine grid, Figure 8 shows the convergence behavior on the
128 X 32 grid. On the 64 X 16 grid the SER algorithm needed
66 total Newton iterations, and 2172 TFQMR iterations. Figure
9 shows the contour plots of the electron temperature and
plasma density for this solution. The effect of puffing neutral
gas is clearly noticeable. The electrons give up energy to ionize
the neutral gas. This causes the observed drop in electron tem-
perature and the increase in plasma density. The energy lost
by the electrons through radiation is assumed a loss in the
problem; although for ITER-like divertor conditions this may
not be a good assumption [48], since much of the resonance
radiation may be reabsorbed. Figure 10 shows line plots in the
poloidal direction for the outboard divertor leg. Here we see
supersonic flow and a significant increase in the neutral density
fraction near the plate. The declining plasma density near the
plate is due to volume recombination which becomes important



290

Electron Temperature {eV)

—
f=

Height (meters)

0.5

156
Major Radius (meters)

KNOLL AND McHUGH

Plasma Density (1/m®)

Jury

0

Height (meters)

05

1.0 1.5

Major Radius (meters}

FIG. 9. Electron temperature and plasma density for gas puffing simulation,

below 1 eV. The *‘ionization front”’ can be clearly seen in the
temperature profiles. This solution had 3.2 MW crossing the
separatrix, and 1.1e-22 particles flowing back into the core; 2.3
MW were radiated out of the problem with the remainder of
the power going to the plates. On the outboard plate, the peak
electron temperature was 0.4 eV, the peak plasma density was
2.25e-20 m™?, and the peak heat flux was 0.1 Mw/m?.
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5. CONCLUSIONS

Significant improvemenis have been added to the original
Newton solution algorithm for the edge plasma fluid equations
described in [11, 12]. These improvements include the use of an
efficient numerical evaluation of the Jacobian and an advanced
iterative solution of the linear system. This new algorithm pro-
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FIG, 10. Electron (T.) and ion (T}) temperatures, paratiel Mach number (Ma), plasma (;) and neutral (M) densities along separatrix in outboard divertor

region for gas puffing simulation.
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vides a robust and efficient method for calcuiating fully implicit
solutions on a multiply-connected domain and retains the unam-
biguous convergence characteristics. This will allow the inclu-
sion of E X B and diamagnetic fluid drifts on grids of sufficient
resolution. It will also allow progression to 2D multifinid radiat-
ing impurities. In addition, there is a growing desire to perform
transient simulations of the edge plasma. To this end we are
studying the performance of less costly preconditioners as well
as the use of matrix-free methods [32, 49] for the efficient
solution of the transient equations.
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